Historic overview Carbon–hydrogen bond activation



cobalt-catalyzed c-h activation



in 1969, a.e. shilov reported potassium tetrachloroplatinate induced isotope scrambling between methane , heavy water. pathway proposed involve binding of methane pt(ii). in 1972, shilov group able produce methanol , methyl chloride in similar reaction involving stoichiometric amount of potassium tetrachloroplatinate, catalytic potassium hexachloroplatinate, methane , water. due fact shilov worked , published in soviet union during cold war era, work largely ignored western scientists. so-called shilov system today 1 of few true catalytic systems alkane functionalizations.


in cases, discoveries in c-h activation being made in conjunction of cross coupling. in 1969, yuzo fujiwara reported synthesis of (e)-1,2-diphenylethene benzene , styrene pd(oac)2 , cu(oac)2, procedure similar of cross coupling. on category of oxidative addition, m. l. h. green in 1970 reported on photochemical insertion of tungsten (as cp2wh2 complex) in benzene c–h bond , george m. whitesides in 1979 first carry out intramolecular aliphatic c–h activation



fujiwara s palladium- , copper-catalyzed c-h functionalization



the next breakthrough reported independently 2 research groups in 1982. r. g. bergman reported first transition metal-mediated intermolecular c–h activation of unactivated , saturated hydrocarbons oxidative addition. using photochemical approach, photolysis of cp*ir(pme3)h2, cp* pentamethylcyclopentadienyl ligand, led coordinatively unsaturated species cp*ir(pme3) reacted via oxidative addition cyclohexane , neopentane form corresponding hydridoalkyl complexes, cp*ir(pme3)hr, r = cyclohexyl , neopentyl, respectively. w.a.g. graham found same hydrocarbons react cp*ir(co)2 upon irradiation afford related alkylhydrido complexes cp*ir(co)hr, r = cyclohexyl , neopentyl, respectively. in latter example, reaction presumed proceed via oxidative addition of alkane 16-electron iridium(i) intermediate, cp*ir(co), formed irradiation of cp*ir(co)2.





c–h activation bergman et al. (left) , graham et al.





the selective activation , functionalization of alkane c–h bonds reported using tungsten complex outfitted pentamethylcyclopentadienyl, nitrosyl, allyl , neopentyl ligands, cp*w(no)(η-allyl)(ch2cme3).








in 1 example involving system, alkane pentane selectively converted halocarbon 1-iodopentane. transformation achieved via thermoloysis of cp*w(no)(η-allyl)(ch2cme3) in pentane @ room temperature, resulting in elimination of neopentane pseudo-first-order process, generating undetectable electronically , sterically unsaturated 16-electron intermediate coordinated η-butadiene ligand. subsequent intermolecular activation of pentane solvent molecule yields 18-electron complex possessing n-pentyl ligand. in separate step, reaction iodine @ −60 °c liberates 1-iodopentane complex.


arene c–h bonds readily activated metal complexes, illustrated directed ortho metalation. n,n-dimethylbenzylamine in cyclometalation readily many transition metals:






one manifestation murai olefin coupling.




^ chatt, j.; davidson, j. m. tautomerism of arene , ditertiary phosphine complexes of ruthenium(0), , preparation of new types of hydrido-complexes of ruthenium(ii) . j. chem. soc. 1965: 843. doi:10.1039/jr9650000843. 
^ murahashi, shunsuke (1955-12-01). synthesis of phthalimidines schiff bases , carbon monoxide . journal of american chemical society. 77 (23): 6403–6404. doi:10.1021/ja01628a120. issn 0002-7863. 
^ cite error: named reference goldman invoked never defined (see page).
^ fekl, u.; goldberg, k. i. (2003). homogeneous hydrocarbon c-h bond activation , functionalization platinum . advances in inorganic chemistry. 54: 259–320. doi:10.1016/s0898-8838(03)54005-3. 
^ fujiwara, yuzo; noritani, ichiro; danno, sadao; asano, ryuzo; teranishi, shiichiro (1969-12-01). aromatic substitution of olefins. vi. arylation of olefins palladium(ii) acetate . journal of american chemical society. 91 (25): 7166–7169. doi:10.1021/ja01053a047. issn 0002-7863. pmid 27462934. 
^ green, m. l.; knowles, p. j. (1970). formation of tungsten phenyl hydride derivatives benzene . j. chem. soc. d. 24: 1677–1677. doi:10.1039/c29700001677. 
^ foley, paul; whitesides, george m. (1979). thermal generation of bis(triethylphosphine)-3,3-dimethylplatinacyclobutane dineopentylbis(triethylphosphine)platinum(ii) . j. am. chem. soc. 101 (10): 2732–2733. doi:10.1021/ja00504a041. 
^ janowicz, andrew h.; bergman, robert g. (1982). carbon–hydrogen activation in saturated hydrocarbons: direct observation of m + r−h → m(r)(h) . j. am. chem. soc. 104 (1): 352–354. doi:10.1021/ja00365a091. 
^ hoyano, james k.; graham, william a. g. (1982). oxidative addition of carbon–hydrogen bonds of neopentane , cyclohexane photochemically generated iridium(i) complex . j. am. chem. soc. 104 (13): 3723–3725. doi:10.1021/ja00377a032. 
^ baillie, rhett a.; legzdins, peter (2013). distinctive activation , functionalization of hydrocarbon c–h bonds initiated cp*w(no)(η-allyl)(ch2cme3) complexes . acc. chem. res. 47: asap. doi:10.1021/ar400108p. 
^ chetcuti, michael j.; ritleng, vincent (2007). formation of ruthenium–arene complex, cyclometallation substituted benzylamine, , insertion of alkyne . j. chem. educ. 84: 1014. bibcode:2007jched..84.1014c. doi:10.1021/ed084p1014. 
^ murai, shinji; kakiuchi, fumitoshi; sekine, shinya; tanaka, yasuo; kamatani, asayuki; sonoda, motohiro; chatani, naoto (1993). efficient catalytic addition of aromatic carbon–hydrogen bonds olefins . nature. 366 (6455): 529–531. bibcode:1993natur.366..529m. doi:10.1038/366529a0. 






Comments

Popular posts from this blog

Discography Neuronium

Discography E-Rotic

Deep sea mining Marine pollution