Applications Moore–Penrose inverse




1 applications

1.1 linear least-squares
1.2 obtaining solutions of linear system
1.3 minimum norm solution linear system
1.4 condition number





applications
linear least-squares

the pseudoinverse provides least squares solution system of linear equations.



a


m

(
m
,
n
;
k
)




{\displaystyle a\in \mathrm {m} (m,n;k)\,\!}

, given system of linear equations







a
x
=
b
,



{\displaystyle ax=b,\,}



in general, vector



x


{\displaystyle x}

solves system may not exist, or if 1 exist, may not unique. pseudoinverse solves least-squares problem follows:








x


k

n






{\displaystyle \forall x\in k^{n}\,\!}

, have




a
x

b



2




a
z

b



2




{\displaystyle \|ax-b\|_{2}\geq \|az-b\|_{2}}





z
=

a

+


b


{\displaystyle z=a^{+}b}

,








2




{\displaystyle \|\cdot \|_{2}}

denotes euclidean norm. weak inequality holds equality if , if



x
=

a

+


b
+
(
i


a

+


a
)
w


{\displaystyle x=a^{+}b+(i-a^{+}a)w}

vector w; provides infinitude of minimizing solutions unless has full column rank, in case



(
i


a

+


a
)


{\displaystyle (i-a^{+}a)}

0 matrix. solution minimum euclidean norm



z
.


{\displaystyle z.}



this result extended systems multiple right-hand sides, when euclidean norm replaced frobenius norm. let



b


m

(
m
,
p
;
k
)


{\displaystyle b\in \mathrm {m} (m,p;k)}

.








x


m

(
n
,
p
;
k
)




{\displaystyle \forall x\in \mathrm {m} (n,p;k)\,\!}

, have




a
x

b




f





a
z

b




f





{\displaystyle \|ax-b\|_{\mathrm {f} }\geq \|az-b\|_{\mathrm {f} }}





z
=

a

+


b


{\displaystyle z=a^{+}b}

,









f





{\displaystyle \|\cdot \|_{\mathrm {f} }}

denotes frobenius norm.

obtaining solutions of linear system

if linear system







a
x
=
b



{\displaystyle ax=b\,}



has solutions, given by







x
=

a

+


b
+
[
i


a

+


a
]
w


{\displaystyle x=a^{+}b+[i-a^{+}a]w}



for arbitrary vector w. solution(s) exist if , if



a

a

+


b
=
b


{\displaystyle aa^{+}b=b}

. if latter holds, solution unique if , if has full column rank, in case



[
i


a

+


a
]


{\displaystyle [i-a^{+}a]}

0 matrix. if solutions exist not have full column rank, have indeterminate system, of infinitude of solutions given last equation. solution connected udwadia–kalaba equation of classical mechanics forces of constraint not obey d alembert s principle.


minimum norm solution linear system

for linear systems



a
x
=
b
,



{\displaystyle ax=b,\,}

non-unique solutions (such under-determined systems), pseudoinverse may used construct solution of minimum euclidean norm




x



2




{\displaystyle \|x\|_{2}}

among solutions.



if



a
x
=
b



{\displaystyle ax=b\,}

satisfiable, vector



z
=

a

+


b


{\displaystyle z=a^{+}b}

solution, , satisfies




z



2




x



2




{\displaystyle \|z\|_{2}\leq \|x\|_{2}}

solutions.

this result extended systems multiple right-hand sides, when euclidean norm replaced frobenius norm. let



b


m

(
m
,
p
;
k
)




{\displaystyle b\in \mathrm {m} (m,p;k)\,\!}

.



if



a
x
=
b



{\displaystyle ax=b\,}

satisfiable, matrix



z
=

a

+


b


{\displaystyle z=a^{+}b}

solution, , satisfies




z




f





x




f





{\displaystyle \|z\|_{\mathrm {f} }\leq \|x\|_{\mathrm {f} }}

solutions.

condition number

using pseudoinverse , matrix norm, 1 can define condition number matrix:








cond

(
a
)
=

a



a

+



.
 


{\displaystyle {\mbox{cond}}(a)=\|a\|\|a^{+}\|.\ }



a large condition number implies problem of finding least-squares solutions corresponding system of linear equations ill-conditioned in sense small errors in entries of can lead huge errors in entries of solution.








Comments

Popular posts from this blog

Discography Neuronium

Discography E-Rotic

Deep sea mining Marine pollution