Linear least-squares Moore–Penrose inverse
the pseudoinverse provides least squares solution system of linear equations.
a
∈
m
(
m
,
n
;
k
)
{\displaystyle a\in \mathrm {m} (m,n;k)\,\!}
, given system of linear equations
a
x
=
b
,
{\displaystyle ax=b,\,}
in general, vector
x
{\displaystyle x}
solves system may not exist, or if 1 exist, may not unique. pseudoinverse solves least-squares problem follows:
∀
x
∈
k
n
{\displaystyle \forall x\in k^{n}\,\!}
, have
∥
a
x
−
b
∥
2
≥
∥
a
z
−
b
∥
2
{\displaystyle \|ax-b\|_{2}\geq \|az-b\|_{2}}
z
=
a
+
b
{\displaystyle z=a^{+}b}
,
∥
⋅
∥
2
{\displaystyle \|\cdot \|_{2}}
denotes euclidean norm. weak inequality holds equality if , if
x
=
a
+
b
+
(
i
−
a
+
a
)
w
{\displaystyle x=a^{+}b+(i-a^{+}a)w}
vector w; provides infinitude of minimizing solutions unless has full column rank, in case
(
i
−
a
+
a
)
{\displaystyle (i-a^{+}a)}
0 matrix. solution minimum euclidean norm
z
.
{\displaystyle z.}
this result extended systems multiple right-hand sides, when euclidean norm replaced frobenius norm. let
b
∈
m
(
m
,
p
;
k
)
{\displaystyle b\in \mathrm {m} (m,p;k)}
.
∀
x
∈
m
(
n
,
p
;
k
)
{\displaystyle \forall x\in \mathrm {m} (n,p;k)\,\!}
, have
∥
a
x
−
b
∥
f
≥
∥
a
z
−
b
∥
f
{\displaystyle \|ax-b\|_{\mathrm {f} }\geq \|az-b\|_{\mathrm {f} }}
z
=
a
+
b
{\displaystyle z=a^{+}b}
,
∥
⋅
∥
f
{\displaystyle \|\cdot \|_{\mathrm {f} }}
denotes frobenius norm.
^ penrose, roger (1956). on best approximate solution of linear matrix equations . proceedings of cambridge philosophical society. 52: 17–19. doi:10.1017/s0305004100030929.
^ planitz, m., inconsistent systems of linear equations , mathematical gazette 63, october 1979, 181–185.
Comments
Post a Comment